Disruption of thermally-stable nanoscale grain structures by strain localization.

نویسندگان

  • Amirhossein Khalajhedayati
  • Timothy J Rupert
چکیده

Nanocrystalline metals with average grain sizes of only a few nanometers have recently been observed to fail through the formation of shear bands. Here, we investigate this phenomenon in nanocrystalline Ni which has had its grain structure stabilized by doping with W, with a specific focus on understanding how strain localization drives evolution of the nanoscale grain structure. Shear banding was initiated with both microcompression and nanoindentation experiments, followed by site-specific transmission electron microscopy to characterize the microstructure. Grain growth and texture formation were observed inside the shear bands, which had a wide variety of thicknesses. These evolved regions have well-defined edges, which rules out local temperature rise as a possible formation mechanism. No structural evolution was found in areas away from the shear bands, even in locations where significant plastic deformation had occurred, showing that plastic strain alone is not enough to cause evolution. Rather, intense strain localization is needed to induce mechanically-driven grain growth in a thermally-stable nanocrystalline alloy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain Size Effect on the Hot Deformation Processing Map of AISI 304 Austenitic Stainless Steel

In this study, the hot deformation processing map of AISI 304 austenitic stainless steel in two initial grain sizes of 15 and 40 μm was investigated. For this purpose, cylindrical samples were used in the hot compression test at the temperature range of 950-1100 °C and the strain rate of 0.005-0.5% s-1. At first, the relationship between the peak stress and Zener-Hollomon parameter w...

متن کامل

Preparation and Properties of Thermally Stable Polyureas Containing Ether and Ketone Units

The main objective of this search was to prepare novel soluble polyureas with improved thermal stability. Accordingly, a new types of polyureas was prepared through the polycondensation reaction of a prepared diamine containing ether, keto, and naphthyl groups with 4,4’-diphenylmethan diisocyanate (MDI), toluene-2,4-diisocyanate (TDI), and isophorone diisocyanate (IPDI) in N-methyl-2-pyrrol...

متن کامل

New Thermally Stable Aromatic Polyimides Based on Aromatic Diamine ‎2,5-Bis(3-amino-4-methyl benzene)-1,3,4-oxadiazole (BAMO):‎ Synthesis and Characterization

In current study, the synthesis and characterization of novel thermally stable polyimides (PIs) containing an 1,3,4-oxadiazole moiety based on a diamine, i.e. 2,5-bis(3-amino-4-methyl benzene)-1,3,4-oxadiazole (BAMO), have been reported. The polymers were characterized using FT-IR and elemental analysis (CHN). Thermal and mechanical behaviours of the prepared PIs were studied by thermo-gravimet...

متن کامل

Berberis Aristata: A Highly Efficient and Thermally Stable Green Corrosion Inhibitor for Mild Steel in Acidic Medium

Plant extracts are extensively researched as a source of green corrosion inhibitors. Herein, we report on a highly efficient and thermally stable corrosion inhibitor from the stem extract of high-altitude shrub Berberis aristata. The corrosion inhibition efficiency (IE) of the extract was tested in 1.0 M H2SO4 for the corrosion protection of mild steel (MS) by using gravimetric and electrochemi...

متن کامل

An Alternative Method for Synthesis of Thermally Stable Aromatic Polyesters Containing Schiff Base Unites

In this paper, an efficient method for synthesis of aromatic polyesters containing schiff base units is described by preparation of two polyesters. These polyesters have been prepared by the reaction of terephthaloyl dichloride on Schiff bases derived from p-hydroxybenzyldehyde and 4,4-diamino diphenyl ether, 4,4-diamino diphenyl methane. The Polymers were characterized by IR, CHNS, thermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015